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FILTERING FOR LINEAR DISTRIBUTED PARclMETER SYSTEMS 

Harold J. Kushner 

1, Introduction 

The systems t o  be considered are described by parabolic equations 

w i t h  'white noise' inputs, W e  are  interested i n  conditions which 

guarantee tha t  the solution U(x,t), a random surface, has cer ta in  

smoothness properties, and also i n  the  smoothness properties of the con- 

d i t iona l  expectation E[U(x,t)l given data up t o  t]. Such resul ts  are 

developed i n  [l], [2] using the Sobolev imbedding theorem. 

Firstysome of these resu l t s  w i l l  be stated. A system model (f irst  

boundary value problem) i s  discussed i n  Section 2, Lemma 3. 

observations for t h i s  problem have the form (7). 

smoothness of the conditional mean and covariance, and Theorem 1 gives 

the form of the optimal f i l ter .  Section 3 considers a second boundary 

The noisy 

Lemma 4 proves the 

value problem (16) with surface observations of the form (B6). 

proves the smoothness of the solution t o  (16), and Theorem 2 gives the 

form of the optimal f i l ter .  

Lemma 5 

Smoothness Results on Random Surfaces, L e t  zt be a normalized 

Wiener process, D a bounded open domain i n  En with closure b and 

a continuous and piecewise uniformly differentiable boundary and m i t e  
- 

= D x [O,T]. L e t  Dt = a/&, D. = a/&., 1 Df = #/hi* Let f(x,t) 
1 

I - 
be a stochastic process on 

(Dif (x,t)), denotes the 'mean square' derivative of f (x,t) 

D x [O,T] = R. The parenthesis i n  

with respect 



2 

t o  xi, i f  it exists. Define the norm 

[l] and [2], fromwhich Lemmas 1 and 2 are taken give conditions on the  

expectations of integrals of powers of the 'mean square' derivatives, 

which guarantee tha t  f (x , t )  has a w.p.1. continuous version on R, and 

perhaps several. continuous derivatives with respect to components of x. 

- 

The proof of Lemma 1 i s  contained i n  [2]. 

. .  . -  -. 
Lemma 1. Let the boundary &I of D have the property tha t  ar?y - 

l i ne  intersects it only f i n i t e l y  often. Let the functions 

be defined on 5 x [O,T] x [O,T] = E X [O,T], continuous in  

each 

of s, Let f be any function i n  the s e t  ( *  ), and l e t  ~ ( t )  be a 

Wiener process. Then ./ f (x,t,s)ds 5 M < 03 fo r  some r e a l  number M, 

and ./ f (x,t, s)dzs 

(x,t) fo r  
I_ 

s, and bounded (in absolute value) by a squ'are integrable function - 
7 

-2 
- - 

- 
0 t 

can be defined to be a separable and measurable - 
0 

process with parameter (x,t). There is  a nu l l  s e t  N and a separable 

and measurable version of * a(x,t,s)dz = $(x, t )  which, fo r  w { N, i s  
t 

- S 
0 

continuous'in (x,t) and has three continuous ( in  (x,t))  derivatives - 
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with respect to the  components of X. These derivatives are equal t o  

continuous (for o { N), separable and measurable versions of - 

L e t  i n  addition, for  some r e a l  numbers K < a, f3 > 0, 

t 
f ( X J t + 4  S ) d Z s  - 0 f ( X J t ,  S)dZ s 

2 t+A 2 B t 
= J [f(x,t-tA,s) - f (x , t ,s ) ]  ds + .f 

0 t 
f (x,t+A,s)ds 5 KA, 

where f is  any member of ( * ) .  L e t  g be any member of the  f i r s t  

three sets of 

- - 
( *  ). Then the continuous version (for o f! N) of - -  I 

t 
g(x,t,s)'dzs = @(x,t)  i s  Holder continuous on E, i.e., there i s  some 

0 

K(w) < 03 w.p.1, and a r e a l  y > 0 so tha t  

where I 0 1  re fers  t o  the  Euclidean norm. 

- 
Lemma 2. L e t  f (x,t) be a process on R, which i s  continuous i n  - 

probability together w i t h  i t s  'mean square' derivativauup to order a 
t on E, Let pa > n, p > 1, and suppose t h a t  fo r  0 6 s 5 t 5 T, - - 

'Recall t ha t  (2) i s  equivalent t o  
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for some real K < 03 and 1 S q < 03 and Q! > 0, Then there i s  a w.p.1, 

continuous version of f ( * , o )  on x [O,T], and the version i s  Holder 

continuous in  t, uniformly i n  x, wop.l. 

- - 
- 

If 0 < m < ,4 - n/p, then the 'mean square' derivatives of order s m  - 
have continuous versions on w.p.l., and f (x,t) has w.p.1. a con- - - 
tinuous version whose f i r s t  m x-derivatives coincide with the 'mean square' 

derivatives 

For proof, see Theorem 4 i n  [l],, 



2, Fil ter ing for  a Stochastic F i r s t  Boundary Value Problem 

System Model, The first system with which we w i l l  deal has the 

t representation 

where 

2 = c a ( x , t ) D . D .  -F bi(x,t)Di 
ij 1 J  

and (Al) - (A7) hold, 

(AS) &I (the boundary of D) has a loca l  representation with 

holder continuous kth derivatives, 

(A2) The coefficients of 2, and the i r  f i r s t  two derivatives are 

Holder continuous i n  E. 
z (e) C a 5 . 5 .  2 K C ti  f o r  some r e a l  - >  K > 0, i j  1 J 

(Ah) and i ts  f irst  four x-derivatives are  Holder continuous 

on Eo 
(As) cr and 2cr go t o  zero as x +&I, 

(A6) k(y,x,t) i s  bounded, measurable and Holder continuous i n  

x,t, uniformly i n  y, and k(y,x,t) + O  as x +he 

(A7) U(x,O) is  Gaussian fo r  each x, has a bounded variance, Holder 

'For notational simplicity, we l e t  the 'driving term' be a(x,t)dz, 
It could be cri(x,t)dzi, where the zi are independent. See 



continuous second derivatives, and U(x,O) and iU(x ,O)  + 0 as x 3 &. 

U(x,O) i s  independent of z and of wt (to be introduced below). 

In [2], Lemmas 1 and 2 are applied to (4) to give it a precise 
t 

defini t ion and 

t Lemma 3. (See [2], Lemma 3.2 fo r  proof.) Assume (Al) - (A7). Then - 
there i s  a random function U(x,t) on (O,T] x so tha t  a version (for - - 

# N, ( in  - (O,T] x D )  'mean square' con- 

tinuous functions 

are  continuous on (O,T] K 6 w.p.1.; these versions of the 'mean square' 

derivatives are  t rue  derivatives. U(x,t) and 2U(x,t) 3 0 as x -+ 

&I (for w N), U(x,t) +U(x,O) (for - w # N, and uniformly i n  x) 

as t 3 0 .  The f i r s t  three sets of (6) a re  Holder continuous i n  t, 

for  w f! N. U(x,t) i s  a Markov process ( w i t h  values in  a s t a t e  space 

of functions with Holder continuous second derivatives).  

- of ( 6 )  are  Gaussian, and have uniformly bounded variances. 

_I - 

I 

- 
The members 

The variances 

- of U(x,t) and of i U ( x , t )  tend to zero as x + he U(x,t) i s  non- 

anticipative with reapect t o  the z process and the I t o  d i f f e ren t i a l  t 
- of U(x,t) s a t i s f i e s  (4). U(x,t) s a t i s f i e s  the condition (2) c of 

Lemma 2, for  m = 3, .4 = 4, and a l l  large p, and some f i n i t e  q and - - 
a > 0. (D.D.D D U(x,t)) i s  also uniformly 'mean square' continuous i n  

1 j k . 4  

(O,T] X R. 

+The smoothness i n  (Al), (A2), (Ab) gives a U ( x , t )  w i t h  continuous 
t h i r d  x-derivatives, hence Holder continuous second derivatives. In  - 
the  control problem i n  [ 2 ] ,  we wanted U ( x , t )  to have Holder continuous 
second derlvatives. If only continuous second derivatives are required, 

~ then the  d i f f e ren t i ab i l i t y  requirements i n  (Al), (A2), (Ah) can be re- 
duced by 1. 
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The Fi l te r ing  Problem. L e t  Gt be a normalized Wiener process 

independent o f t h e  z process, and suppose t h a t  t 
(A8) H(x,t) i s  a vector-valued function which is  defined and 

continuous on E. 
(AS) B ( t )  is  continuous on [O,T] and B ( t ) B t ( t )  = Et i s  

s t r i c t l y  posit ive def in i te  on [O,T]. 

S N s 1/2-  
Define w = J B(T)dwT = f E, dw,. Suppose t h a t  the data 

S 
0 0 

S S S 
Y(S) = f [f H(x,,)U(x,T)dx]dT + f B(T)dGTf f h,d, + w s 5 t (7) 

S' 
0 0 0 

i s  available a t  time t. All introduced cr-algebras are  assumed t o  be 

complete with respect t o  whatever measures are imposed on them,' l e t  t 

gt be the  minimal o-algebra determined by y(s), s 6 t, Let p 1  be 

the measure determined by the processes U(X,S), s 6 t and dy(s) = hsds 

+ dws, s 5 t, and p the  measure determined by the  processes U(x,t) 

and *(S) = dWs, s S to Let Et denote the  expectation with respect 

to pi, and conditioned on 3 

0 

i 

to 

Define 

'To be more precise, l e t  R be a f'unction space w i t h  generic element 
u) = (U)~,U)"), where 
on E, and cu" i s  a member of the  space of bounded functions on [O,T]. 
with values i n  the  Euclidean m-dirrrensional space E", where m i s  the 
dimension of wt and yt. The terminology i s  used la te r .  See par t  lo 

of the  proof of Theorem 1. 

w' . i s  a member of the space of bounded functions 
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L e t  gXP(x,y,t) denote 2 operating on P(x,y,t) as a function of X. 

Lemma 4 proves t h a t  there i s  a version of t he  estimate M(x,t) which is, 

w.p.l., as smooth as the signal U(x,t). 
- .... 

Lemma 4. Assume ( A l )  - (A9). Then (excluding a n u l l  s e t  independent - 
I of (x,t)) there  are on (Q,T] X 5 colatinuous versions of  the f i r s t  four 

sets of the continuous i n  quadratic mean functions 

also M(x,t) -+ M(x,O) as t -+ 0 (and also in  quadratic mean) and the 

f i r s t  three se t s  of 'mean square' derivatives are  t rue  derivatives and 

El$U(X,t) = 2 M ( X , t ) i  - also M(x,t) - and $M(x,t) 3 0 - as x -+ &I, - and 

the  f i rs t  three se t s  of (7) have Holder continuous versions. P(x,y,t) 

has continuous th i rd  derivatives in  the  components of  x and y on 

- I 

t 

- - 
(O,T] x D, and P(x,y,t) - and ixP(x,y,t) - and 2 P(X,y,t) + 0 I as 

x -+ & or y -+ P(x,y,t) 3 ~(x,y,O) as t -+O.  
Y I_ 

- 

Proof a 
P 

'mean square 

M(x, t) and the (DiM(x,t)), ,=, (DiDjDkDjM(X,t)) ex i s t  nd ar  : 

continuous i n  x-uniformly i n  (x,t) i n  (O,T] x D o  Also 

= (DiM(x,t)) w,p,l. (as well as for  the next three derivatives) 

for each x, t  i n  (O,T] x D. These assertions easi ly  follow from estimates 

n of the following type: l e t  ei be the ith coordinate direction i n  E , 
where n i s  the  dimension of X. Then 
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U(x+eiA,t) - U(x,t) 
E11 A - (DiU(x,t)) I + 0 

as A 3 0, uniformly for x,t in D x (O,T]. 

Furthermore, M(x,t) also satisfies the estimates (w) and (***) 

For u = 2, E,(x,~,s) 6 K It-sl (hence for u 

The inequality on fu(x,t,s) follows from the 

form positive definiteness of cs, which gives 
at which information can be collected. 

1 

Est-imates ( * ) 9  (**), (***) imply that the 

Gaussianness, and the uni- 

an upper limit on the rate 

m e  uniformly ' m e a n  square' continuous in (O,T] x D. 

The statements concerning the continuity of M(x,t) and its derivatives 
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then folic:; *om Lemmas 2 and 3 since by the  estimates (**), (***j (and 

obvious similar estimates f o r  

s a t i s f i e s  Lemma 2 fo r  m = 3,  so does M(x,t). Since (*") i s  val id  for 

(DiM(x,t)), . . ., (D.D .D D M(x,t)), i f  U ( x , t )  1 J k $  

S = .O, M(x,t) + M(x,O). 

M(x,t) and Dl(x,t) + 0 as x & since both U(x,t) and 

gU(x,t) and t h e i r  variances -+ 0 as x 3 a. 
The asserted smoothness of P(x,y,t) and i t s  boundary properties 

follow from the continuity i n  quadratic mean of the  elements of ( 8 ) ,  ( 8 * ) ,  

fM(x,t) and gU(x,t). 

B 

u(x,t)> 0 0 )  (DiDjDkD$u(x,t)) (8' 1 

(see, f o r  example, Loeve [6], Sec. 34.2 for the type of calculations which 

are required, ) Q,E,D. 

Theorem 1, Assume (Al )  - (A9). Then there i s  a version of 

h 
M(x,t) which has the I t o  d i f f e ren t i a l  w,p,l. 

and, for  t h i s  version, wopolo ,  M(x,t) and m(x,t) -+ 0 - as x -+ &I, 

Furthermore, P(x,y, t) s a t i s f i e s  

- 
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Proof, For the sake of keeping a framework which w i l l  allow a 
I 

generalization (not proved here) to non-linear systems, we take a 

s l igh t ly  more general approach than necessary. The non-linear problem 

for  ordinary stochastic I t o  equations was treated i n  [3], however here, 

we follow a s l igh t ly  different  approach, due to Zakai [4], which gives 

the resu l t  under weaker conditions than those required i n  [3]. 

l o o  lo and p1 m e  absolutely continuous with respect to one 

t another and dpl/dp. = exp R 
0 

Next, following Z & a i  ['c], note t h a t  if  E I f (u,t)l < w, then (see Loeve, 

[ 5 ] ,  Sec. 24.4) 
1 

2'. Write 
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In (ll)y l e t  f(u,t) = U(x,t), Both U ( x , t )  and exP Rt me 

stochastic integrals  and 

-1 

Then Ito's lemma, applied to (11) yields 

L 

At = E: I dU(x,s)exp Rsds + E:U(x90) 
0 

t t -1 t 
= Eo ! [u(x~s)(exP Rs)h& dY S f (exp Rs)(Fsds + b(x,s)dz S ) ]  + EoU(x,O) 

0 

and where dydz = 0 i s  used to eliminate the (dU(x,s))(d exp Rs) 

term from Ate 
t A s  i n  Kushner [3] or  Z&ai [4], it can be shown below that,  w.p,l. 

- __ - -. -- ._ . . -- 

tThe demonstration of (14), by the method $3' [3] requires more stringent 
conditions on R and U, then by the method of [4]. 
The method of [4] i s  applicable under the conditions of the  hypothesis 

of Theorera 1. 
The method of [3] may also be applied, by applying it to a suitable 

sequence of bounded FE,h 

S 

E 
S 

and h i n  probability. 
FS S 

which converges to 



_ _  - 
where the second integrals are well-defined w,p,l, Assuming (14) now, 

we proceed exactly as in [ 3 ]  and get 

where 

(at)* = 

( 9 )  is obtained by substituting in (12) and using the fact ((11)) t h a t  

E:f = [Eof t exp Rt]/Eo t exp Rt. 

3O,,  Similarly, dP is calculated- from the expression 

t To get 

we now let 

dEIU(x,t)U(y,t), repeat the procedure starting with (ll), where 

f(a,t) = U(x,t)U(y,t), and- use the w.p,l. equalities 



The de ta i l s  are  straightforward and are omitted. Q.E.D. 



3* The Second Boundary Value Problem 

Now, we consider the equation 

t &(Y t) av(x) at 
where UV(x, t )  i s  the eo-normal derivative &/& = l i m  

Y-M 
YCD 

X on a, and (B1) - (B8) are assumed. 

(B2) aij (x,t) and b. (x,t) are  Holder continuous in  R. 

(B3) f (x , t )  i s  continuous,and Holder continuous in  x, uniformly 

1 

in t, 

(B4) &I has a loca l  representation with Holder continuous deriv- 

at ive s e 

(B5) Real-valued g(x,t) and row-vector valued v(x, t) are  

continuous on a and r i s  the Gaussian random process satisfying 

dr  = A ( t ) r d t  f G(t)dvz, where z i s  independent the z and w 

processes introduced ear l ier ,  and of U(x,O). A ( t )  and G ( t )  are 

N 

t t t 

bounded continuous functions. 

(B6) The observations dy = [$ H([,t)U(E,t)dS ]dt f dw are taken, 
aD 5 

where H( k,t) is  continuous on & x [O,T], and w i s  independent 

of U(x,O), and dS is the d i f fe ren t ia l  surface measure on a, Also 

ct sa t i s f i e s  (Ag), where dw = x:I2dG, and wt i s  a normalized Wiener 

t 

5 
N 

process. 

'v(x) i s  the eo-normal direction a$ the point x on & 



(B7) Denote a(x,t,s) = .f P(x, E; t, s)b(t, s)dt, where r i s  the  
D 

fundamental solution of DtU = ZU, L e t  cr(6, s) be uniformly continuous, 

Let Y(x, t, s) 

Let, uniformvy i n  R, 

represent e i ther  a(x, t, s), Dia(x, t, s) o r  D .D .a(x, t, s) 
= J  - 

t 

for some real 

l y  for  x , t , t '  

(B8) Let 

K and l3 > 0. Let D.D.D T(x,t,s) s a t i s fy  (1.7) uniform- 
1 J k  

2 i n  any compact subset of D X [O,T] . 
(x,o) be and let aij  

U(x,O) be different iable  w.p,l., 

continuously different iable  i n  some neighborhood of &. 

Lemma 5. Assume (31) - (B8), Then there i s  a random function 

which has a version w i t h  the  following properties, w.p.1. (where U(x,t) 

the n u l l  s e t  doesn't depend on x,t). 

(a) u(x,t) i s  continuoust on E 7 
- 

( D . U ( x , t ) )  i s  continuous on compact subsets of D x (O,T] (also i n  
1 

quadratic m e a n ) .  
. . -  

(b) The (D.D.U(x , t ) )  are continuous on compact subsets of 
1 J  - 

(e) . U(x,t) has an It: d i f f e ren t i a l  which s a t i s f i e s  (16a), for  
I 

t > 0, 

(d) U(x,t) s a t i s f i e s  the boundary condition (16b), and U(x,t) + - 
U(X,O) as ~4 0,  
I 

(e) The variances of U(x,t), (D.U(x,t)) ( in  compact subsets of 

F x(O,T]) and (D.D.U(x,t)) ( in  compact subsets of D x (O,T]) - are  

'DiU(x,t) on &I i s  defined as 

1 

1 J  I_ 

lim DiU(x,t). 
m 
Y 



uniformly bounded. 

(f)  U(x,t) i s  non-anticipative, with respect to the  z and t - t  
Processes. 

Proof,, The treatment i n  Friedman [TI, (Theorem 2, po 144 and - 
Corollary 2, p. 147) w i l l  be followed, with the few modifications re- 

quired by the  stochastic nature of the problem taken in to  account. Define 

t 
Let k(x,t) = S dzsp(x,t,s). Then 

0 

Ek2(x,t) = f d t p  (x,t,s) 
0 

2 
Eka(x,t) = Kn[Ek (x,t)]", for some r e a l  K n 

t 0 

Note a l so  tha t  r. (x,t) i s  the 'mean square' derivative of 
1 

ro(x,t)  . w i t h  respect t o  the ith coordinate of x in  D X (O,T], and 

(x,t) i s  the 'mean square' derivative of r (x,t) with respect 
r i jk Jk 
t o  the  ith coordinate of x in  D x (0,T-J. 

Then, '..I- the  estimates (18), (B7) ~ L J .  Lemma 2, there i s  a version 

of r (x,t) which (w~p.1.) i s  continuous on R; it has continuous 
0 

- (D. r (x, t)) = r. (x,t) 
1 0  1 

derivatives DiTo (X, t) - on and continuous 



second derivatives 
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D . D . r  (x,t) = r.. (x,t) = ( D . D . r  (x,t)) i n  compact 
1 J O  1J 1 J O  

subsets of D x [O,T], Furthermore, for  (x,t) E &I x (O,T], a/&?(x) 

= oi(x)Di, ),here cp are  Holder continubus. Hence, the function i 

also has a continuous w.p,l.  version on &I x (O,T], and i n  fact ,  em 

&(x t s) be ident i f ied w i t h  J dzs -e Next Dta(x,t,s) = &x(x,t,s), 
0 

t 
S < t, X 

a(x,t ,s)  i s  continuous on and tends to o(x,t)  as s T t. Hence 

a, and, by (B7), f (Dta(x,t,s))2ds 5 K < co on E* Also 
0 

t t 
d I a(x,t,s)dzs = o(x,t)dzt -I- [f a t ( ~ , t , ~ ) d ~ s ] d l ;  = o(x,t)dzt -I- 

0 O 

t 
2 a(x,t,s)dzsdt. 
0 

From what has been said the  function F(x,t) defined by 

is continuous and uniformly bounded w.pol. on 

[7], p. 143, where continuity i s  shown for  a similar deterministic problem). 

Then,there i s  a continuous (and uniformly bounded (w.p.1.) solution on 

&I x [O,T] 

& x (O,T] (see Friedman 

t o  the  equation (see Friedman [ 7 ] ,  eqn. 3.6, p. 143)) 



where dS i s  the d i f f e ren t i a l  surface measure on a, Finally, (see 

[TI, Theorem 2, p, 144 and Corollary 2, Po 147), it i s  evident t ha t  the  

function 

5 

t 

has the  properties required. In  pa r t i cda r ,  F(x,t) i s  a non-anticipative 

functional of the zt and processes, which implies t ha t  cp(x,t) 

and, i n  turn, U ( x , t ) ,  are a l so  non-anticipative, 

t 
Q,E,D. 

t o  be the measure determined by Now, redefine P1 U(x,s), s 6 t, and 

dys given by (€36) for  s 6 t, and dr(s), s S: t, given by (B5). Let po 

be the measure determined by U(x,s), r(s), s S t, and w(s), s S t. 
t 

t t t 
Let R ( t )  denote the  vector E l r ( t ) ,  PR(t) denote the covariance 

matrix E l ( r ( t )  - E l r ( t ) )  (r(t) - E l r ( t ) ) '  and P (x,t)  denote the 

covariance 

ME3 
t t t 

El(U(x,t) - EIU(x,t)) (r(t) - E1r(t)),' 

Theorem 2, Assume (Bl) - (B8). Then there  i s  a version of M(x,t) 

such t h a t  w,p. l ,~  M(x,t) and i t s  first 'mean square' (or t rue)  - deriv- 

ative are continuous w.p,l, on and 5 x (O,T], resp. The second 

'mean square' (or t rue)  derivatives of M(x,t) are  continuous i n  D x 

(O,T] and M(x,t) has an It0 d i f f e ren t i a l  which s a t i s f i e s  

- - - 

* A  



Also 

satisfies the  boundary conditions fo r  (x,t) on &I X (O,T], 

&+,Y,t) 

dV(x) + B(X,t)?(X,Y, t) = v(x, t)Prn(X, t) 

and Pm(x, t) s a t i s f i e s  the  (vector) boundary conditions 
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_x 

f, The de ta i l s  are very similar to those of Theorem 1 and Lemma 4 - 
and are omitted. 

and a r e su l t  similar to t h a t  of Lemma 4, it i s  easy to show t h a t  there i s  

Only the boundary conditions w i l l  be discussed. By Lemma 5, __ - - _  . _  . .  . - -  . . -- 

- a version of M(x,t) so t h a t  (w.p.1.) M(x,t) i s  continuous on R (and 

- i n  quadratic mean) (D.M(x , t ) )  = D.M(x , t )  i s  continuous on D x (0,TJ 

(and i n  quadratic mean). 

&(y, t) /&(x) and &(y,t)/&(x) are  continuous i n  quadratic mean 

on 6 X (O,T] (as functions of (xyy,t)). Then E;(&(y,t)/&(x)] 

= &(y,t)/&(x>, where the l a s t  term i s  defined by 

1 1 

Similarly, for x E &, it can be shown tha t  

lim a(y , t ) /av(x)  h(x,t) /&(x).  ALSO l i m  & ( y , t ) / & ( X )  
Y*, YED Y*, YED 

s a t i s f i e s  (w.p, 1.) 

The equation 

implies 
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+ B(x,t)Pm(x,t) - v(x,t)P,(t) = 0. T 

End of detai ls .  
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